Markdown to Protocol Buffers Converter
Transform Markdown tables into Protocol Buffers format
Markdown Input
Protocol Buffers Output
Convert other formats to Protobuf
Related Tools
Markdown to Qlik
Convert Markdown tables to Qlik Sense load script format
Markdown to R DataFrame
Convert Markdown tables to R data frame code
Markdown to RDF
Convert Markdown tables to RDF (Resource Description Framework) in Turtle, RDF/XML, or N-Triples format
Markdown to reStructuredText
Convert Markdown tables to reStructuredText format for Sphinx and Python documentation
Markdown to Ruby
Convert Markdown tables to Ruby arrays, hashes, and Struct objects with automatic type detection
Markdown to SQL
Convert Markdown tables to SQL CREATE TABLE and INSERT statements with multi-dialect support
About Markdown to Protocol Buffers Converter
Convert Markdown tables to Protocol Buffers (protobuf) schema and sample data. Perfect for API development, microservices, and data serialization.
Key Features
- Schema Generation: Automatic .proto file creation with proto3 syntax
- Type Inference: Detects string, bool, int32, int64, and double types
- Field Sanitization: Converts column names to valid protobuf identifiers
- Sample Data: Generates textproto format sample data
- Field Comments: Preserves original column names as comments
- Download: Save as .proto file
How to Use
- Input Markdown Table: Paste your Markdown table or upload a .md file
- Review Schema: The proto3 schema is generated automatically
- Check Sample Data: Review the textproto format sample data
- Copy or Download: Use the schema in your protobuf project
- Compile: Use protoc to compile the schema
Type Detection
- bool: Values are "true" or "false" (case-insensitive)
- int32: Integer values fitting in 32-bit signed range (-2,147,483,648 to 2,147,483,647)
- int64: Integer values outside int32 range
- double: Floating-point numbers with decimals or scientific notation
- string: All other values (default type)
Example Conversion
Markdown Input:
| Name | Age | City | Department | |------|-----|------|------------| | John Doe | 28 | New York | Engineering | | Jane Smith | 34 | London | Marketing |
Protocol Buffers Output:
syntax = "proto3";
package markdown_converter;
message MarkdownRecord {
string name = 1; // Name
int32 age = 2; // Age
string city = 3; // City
string department = 4; // Department
}
message MarkdownData {
repeated MarkdownRecord records = 1;
}
// Rows processed: 2
// Sample data in textproto format
MarkdownData {
records {
name: "John Doe"
age: 28
city: "New York"
department: "Engineering"
}
records {
name: "Jane Smith"
age: 34
city: "London"
department: "Marketing"
}
} Common Use Cases
- API Development: Define message schemas for gRPC services
- Microservices: Create data contracts between services
- Data Serialization: Efficient binary data format
- Cross-Platform: Language-agnostic data exchange
- Documentation: Generate schemas from documentation tables
- Testing: Create test data in textproto format
- Configuration: Define config file schemas
Protocol Buffers Features
- Proto3 Syntax: Latest protobuf syntax version
- Package Name: "markdown_converter" namespace
- Message Types: MarkdownRecord (single row) and MarkdownData (collection)
- Field Numbers: Sequential numbering starting from 1
- Repeated Fields: Array of records in MarkdownData
- Comments: Original column names preserved
Field Name Sanitization
Column names are automatically sanitized for protobuf:
- Spaces and special characters → underscores
- Accented characters → normalized to ASCII
- Names starting with numbers → prefixed with "field_"
- Converted to lowercase for consistency
- Duplicate names → numbered suffixes (_2, _3, etc.)
- Example: "First Name" → "first_name"
Using the Generated Schema
Compile with protoc:
# Generate Python code protoc --python_out=. output.proto # Generate Go code protoc --go_out=. output.proto # Generate Java code protoc --java_out=. output.proto # Generate C++ code protoc --cpp_out=. output.proto
Example Python Usage:
import output_pb2 # Create a record record = output_pb2.MarkdownRecord() record.name = "John Doe" record.age = 28 record.city = "New York" record.department = "Engineering" # Serialize to binary binary_data = record.SerializeToString() # Deserialize from binary new_record = output_pb2.MarkdownRecord() new_record.ParseFromString(binary_data)
Advantages of Protocol Buffers
- Compact: Binary format is smaller than JSON or XML
- Fast: Faster serialization/deserialization than text formats
- Typed: Strong typing prevents errors
- Versioning: Schema evolution with backward compatibility
- Cross-Language: Works with 20+ programming languages
- Code Generation: Automatic client/server code generation
Tips for Best Results
- Use descriptive column names (they become field names)
- Ensure consistent data types within columns
- Avoid special characters in column names
- Use lowercase_with_underscores naming convention
- Keep field names short but meaningful
- Review generated types and adjust if needed
- Test with protoc compiler before deployment
Supported Languages
Protocol Buffers supports code generation for:
- C++, C#, Java, Kotlin, Python, Go, Ruby, PHP
- Objective-C, Swift, Dart, JavaScript, TypeScript
- And many more through community plugins
FAQ
- Does every column become a required field? No. The generated proto3 schema does not use required fields; all fields are optional by default in proto3.
- Can I customize field numbers? This tool assigns sequential field numbers automatically. You can edit the generated .proto file afterwards if you need specific numbering.
- What if the inferred type is wrong? Types are inferred from sample data. If a column mixes numbers and text, it falls back to
string. You can manually adjust types in the output schema. - Is any data sent to a server? No. Schema generation and textproto creation happen entirely in your browser; your Markdown never leaves your device.
Privacy & Security
All conversions happen locally in your browser. Your Markdown data is never uploaded to any server, ensuring complete privacy and security.
