Markdown to Pandas DataFrame Converter
Transform Markdown tables into Python Pandas DataFrame code for data analysis and manipulation
Markdown Input
Python Output
Convert other formats to Pandas
Related Tools
Markdown to PDF
Convert Markdown tables to PDF documents with customizable formatting
Markdown to PHP
Convert Markdown tables to PHP arrays and objects with multiple format options
Markdown to PNG
Convert Markdown tables to PNG images with customizable styling
Markdown to Protocol Buffers
Convert Markdown tables to Protocol Buffers schema and data
Markdown to Qlik
Convert Markdown tables to Qlik Sense load script format
Markdown to R DataFrame
Convert Markdown tables to R data frame code
About Markdown to Pandas DataFrame Converter
Convert Markdown tables to Python Pandas DataFrame code with automatic type detection and flexible formatting options. Perfect for data analysis, machine learning, and scientific computing.
Key Features
- Automatic Type Detection: Infers int, float, bool, and string types
- Dictionary Format: Column-oriented data structure
- List Format: Row-oriented data structure with column names
- Custom Variable Names: Choose your DataFrame variable name
- Import Statement: Optional pandas import inclusion
- Python-Safe Names: Automatic column name sanitization
- Example Code: Includes usage examples
- File Download: Save as .py file
How to Use
- Input Markdown Table: Paste your Markdown table or upload a .md file
- Configure Options: Set variable name, format, and type inference
- Review Output: The Python code updates automatically
- Copy or Download: Use the code in your Python project
- Run in Python: Execute the code in Jupyter, Python script, or IDE
Output Formats
- Dictionary Format: Column-oriented, efficient for large datasets
- List Format: Row-oriented, intuitive for small datasets
- With Import: Includes 'import pandas as pd' statement
- Without Import: Only DataFrame creation code
Type Detection
When type inference is enabled, the converter automatically detects:
- Integers: Whole numbers (28, -5, 0)
- Floats: Decimal numbers (3.14, -2.5, 0.0)
- Booleans: True/False, Yes/No, 1/0
- Strings: Text and mixed content
- None: Empty cells become None
Example Conversion
Markdown Input:
| Name | Age | City | Department | |------|-----|------|------------| | John Doe | 28 | New York | Engineering | | Jane Smith | 34 | London | Marketing |
Python Output (Dictionary Format):
import pandas as pd
df = pd.DataFrame({
'name': ['John Doe', 'Jane Smith'],
'age': [28, 34],
'city': ['New York', 'London'],
'department': ['Engineering', 'Marketing']
})
# Display the DataFrame
print(df)
# Access columns
# print(df['name'])
# Get DataFrame info
# print(df.info()) Python Output (List Format):
import pandas as pd
df = pd.DataFrame(
[
['John Doe', 28, 'New York', 'Engineering'],
['Jane Smith', 34, 'London', 'Marketing']
],
columns=['name', 'age', 'city', 'department']
)
# Display the DataFrame
print(df) Common Use Cases
- Data Analysis: Convert documentation data for analysis
- Machine Learning: Prepare datasets for ML models
- Jupyter Notebooks: Quick data loading in notebooks
- Data Science: Transform tables for statistical analysis
- Testing: Create test datasets for unit tests
- Prototyping: Rapid data structure creation
- Documentation: Convert examples to working code
Pandas DataFrame Operations
Once you have your DataFrame, you can perform various operations:
# Basic operations
df.head() # First 5 rows
df.tail() # Last 5 rows
df.info() # DataFrame info
df.describe() # Statistical summary
# Selection
df['column'] # Select column
df[['col1', 'col2']] # Multiple columns
df[df['age'] > 30] # Filter rows
# Manipulation
df.sort_values('age') # Sort
df.groupby('department').mean() # Group by
df['new_col'] = df['age'] * 2 # New column
# Export
df.to_csv('output.csv') # To CSV
df.to_excel('output.xlsx') # To Excel
df.to_json('output.json') # To JSON Integration Examples
Jupyter Notebook:
# Cell 1: Import and create DataFrame
import pandas as pd
df = pd.DataFrame({
'name': ['John Doe', 'Jane Smith'],
'age': [28, 34]
})
# Cell 2: Analyze
df.describe()
# Cell 3: Visualize
df.plot(kind='bar', x='name', y='age') Data Analysis Script:
import pandas as pd
import matplotlib.pyplot as plt
# Load data
df = pd.DataFrame({...})
# Analyze
mean_age = df['age'].mean()
print(f"Average age: {mean_age}")
# Visualize
df.plot(kind='hist', y='age')
plt.show() Column Name Sanitization
Column names are automatically sanitized to be Python-safe:
- Spaces and special characters → underscores
- Names starting with numbers → prefixed with underscore
- Converted to lowercase for consistency
- Example: "First Name" → "first_name"
Tips for Best Results
- Use dictionary format for better performance with large datasets
- Enable type inference for numeric operations
- Use descriptive variable names (df, data, dataset)
- Include import statement for standalone scripts
- Test the generated code in your Python environment
- Consider using list format for better readability
- Validate data types after loading
Requirements
To use the generated code, you need:
- Python 3.6 or higher
- Pandas library:
pip install pandas - Optional: NumPy for numeric operations
- Optional: Matplotlib for visualization
Privacy & Security
All conversions happen locally in your browser. Your Markdown data is never uploaded to any server, ensuring complete privacy and security.
Frequently Asked Questions
Does the tool automatically infer data types correctly?
The converter uses simple heuristics to detect integers, floats, booleans, and strings. For complex real-world datasets, you may still want to call df.dtypes and adjust types manually (e.g., using astype or to_datetime).
Why are empty cells converted to None instead of empty strings?
None is used to represent missing data so that Pandas can treat those values as NaN in numeric columns. This makes downstream analysis and filtering more convenient.
Can I keep my original column names with spaces and special characters?
The generated code uses sanitized, Python-safe column names. If you need human-readable labels, you can rename columns after loading or add a mapping dictionary in your own code.
Is this suitable for very large tables?
For large datasets, copying generated code may not be ideal. Instead, consider exporting CSV/JSON from your source and using Pandas readers. This tool is best for small to medium tables, examples, and documentation snippets.
Can I use this in Jupyter, scripts, and web apps?
Yes. The generated code is plain Python and works in Jupyter notebooks, standalone scripts, and most Python-based web frameworks, as long as Pandas is installed.
