MySQL to R DataFrame Converter
Transform MySQL database dumps into R DataFrame code with automatic type detection
MySQL Input
Convert MySQL to other formats
R DataFrame Output
Related Tools
MySQL to RDF
Convert MySQL CREATE TABLE and INSERT statements to RDF (Resource Description Framework) format with Turtle, RDF/XML, and N-Triples support
MySQL to reStructuredText
Convert MySQL CREATE TABLE and INSERT statements to reStructuredText table format for Sphinx documentation
MySQL to Ruby
Convert MySQL CREATE TABLE and INSERT statements to Ruby arrays, hashes, and Struct objects for Rails applications
MySQL to SQL
Convert MySQL CREATE TABLE and INSERT statements to other SQL dialects (PostgreSQL, SQLite, SQL Server)
MySQL to Textile
Convert MySQL CREATE TABLE and INSERT statements to Textile markup format for Redmine and Textpattern
MySQL to TOML
Convert MySQL CREATE TABLE and INSERT statements to TOML configuration file format
About MySQL to R DataFrame Converter
Convert MySQL database dumps (CREATE TABLE and INSERT statements) to R data frame code. Perfect for statistical analysis, data science workflows, and R programming with MySQL data.
Key Features
- Automatic Type Detection: Infers column types (logical, integer, numeric, character)
- data.frame() Generation: Creates ready-to-run R code
- Column Name Sanitization: Converts MySQL column names to valid R variable names
- NA Handling: Properly handles missing and NULL values as NA
- MySQL Parser: Accurately parses MySQL CREATE TABLE and INSERT syntax
- Type Comments: Includes helpful comments about data types
- Copy & Download: Save as .R file for RStudio
How to Use
- Input MySQL Data: Paste your MySQL CREATE TABLE and INSERT statements or upload a .sql file
- Review Output: The R DataFrame code generates automatically
- Copy or Download: Use the Copy or Download button to save your .R file
- Run in R: Execute the code in R, RStudio, or Jupyter notebooks
Type Detection
The converter automatically detects column types based on data values:
- logical: Values matching "TRUE" or "FALSE" (case-insensitive)
- integer: Whole numbers without decimal points
- numeric: Numbers with decimal points or scientific notation
- character: Text values (default type)
Example Conversion
MySQL Input:
CREATE TABLE employees ( id INT PRIMARY KEY, name VARCHAR(100), age INT, city VARCHAR(50) ); INSERT INTO employees VALUES (1, 'John Doe', 28, 'New York'); INSERT INTO employees VALUES (2, 'Jane Smith', 34, 'London');
R DataFrame Output:
# Rows: 2, Columns: 4
# Column types: id (integer), name (character), age (integer), city (character)
df <- data.frame(
id = c(1, 2),
name = c("John Doe", "Jane Smith"),
age = c(28, 34),
city = c("New York", "London"),
stringsAsFactors = FALSE
)
print(df) Common Use Cases
- Statistical Analysis: Import MySQL data for R statistical analysis
- Data Science: Use MySQL tables in data science workflows
- Machine Learning: Prepare MySQL data for ML models in R
- Visualization: Create plots and charts with ggplot2
- Research: Analyze research data from MySQL databases
- Reporting: Generate reports with R Markdown
R DataFrame Features
- stringsAsFactors = FALSE: Prevents automatic factor conversion
- c() Vectors: Uses R's combine function for column data
- NA Values: Empty cells and NULL values converted to NA
- Type Preservation: Maintains numeric and logical types
- Print Statement: Includes print(df) for immediate output
Column Name Sanitization
MySQL column names are automatically converted to valid R variable names:
- Replaces special characters with underscores
- Removes leading/trailing underscores
- Prefixes numbers with 'X' (e.g., "1st" becomes "X1st")
- Handles duplicate names with numeric suffixes (_2, _3, etc.)
- Generates default names (column_1, column_2) for empty headers
Supported MySQL Data Types
- Numeric: INT, BIGINT, DECIMAL, FLOAT, DOUBLE → integer/numeric
- String: VARCHAR, CHAR, TEXT, MEDIUMTEXT, LONGTEXT → character
- Boolean: BOOLEAN, TINYINT(1) → logical
- NULL: NULL values → NA in R
Using in R
- Copy or download the generated R code
- Open RStudio or R console
- Paste and run the code
- The data frame 'df' will be created and displayed
- Use df in your analysis, visualizations, or models
R Packages Compatibility
The generated data frames work seamlessly with popular R packages:
- dplyr: Data manipulation and transformation
- ggplot2: Data visualization and plotting
- tidyr: Data tidying and reshaping
- caret: Machine learning and modeling
- data.table: High-performance data operations
- rmarkdown: Dynamic reporting
Tips for Best Results
- Ensure MySQL data has clear column names from CREATE TABLE
- Use consistent data types within columns
- Avoid special characters in column names when possible
- Test with sample data before processing large tables
- Review column types in comments and adjust if needed
- Use stringsAsFactors = TRUE if you need factor columns
FAQ
- Do I need both CREATE TABLE and INSERT statements? The converter can infer structure from INSERT statements alone, but CREATE TABLE helps generate better column names and type hints.
- How are NULL or empty values represented? They are converted to
NAin R so that standard data-cleaning and modeling workflows work as expected. - What if R guesses the wrong type? The generated comments show inferred types, but you can always override them with explicit casts such as
as.numeric(),as.integer(), oras.logical(). - Can I change the data frame name? Yes. After you paste the code, you can rename
dfto any valid R symbol that fits your style. - Is my data sent to a server? No. All parsing and generation happen in your browser; your MySQL data is never uploaded.
Privacy & Security
All conversions happen locally in your browser. Your MySQL data is never uploaded to any server, ensuring complete privacy and security.
