JSON to R DataFrame Converter

Transform JSON data into R data.frame code

JSON Input

R Code Output

About JSON to R DataFrame Converter

Convert JSON data to R data.frame code. Generate ready-to-use R code for creating data frames from JSON data, with support for both jsonlite package and manual data.frame() construction.

Key Features

  • jsonlite Support: Generate code using the jsonlite package for complex JSON
  • Manual Construction: Create data.frame() code without dependencies
  • Type Handling: Proper handling of strings, numbers, booleans, and NA values
  • Column Names: Automatic sanitization and preservation of original names
  • Factors Control: Option to convert strings to factors
  • Usage Examples: Includes print, str, summary, and head commands
  • File Upload: Upload JSON files directly or paste data
  • Instant Preview: Real-time conversion as you type

How to Use

  1. Input JSON Data: Paste your JSON data or upload a .json file
  2. Configure Options: Set data frame name and conversion method
  3. Review Output: The R code updates automatically
  4. Copy or Download: Use the Copy or Download button to save your .R file
  5. Run in R: Execute the code in R or RStudio

Example Conversion

JSON Input:

[
  {"Name": "John", "Age": 28, "Salary": 75000},
  {"Name": "Jane", "Age": 34, "Salary": 85000}
]

R Output (jsonlite):

library(jsonlite)

json_string <- '[{"Name":"John","Age":28,"Salary":75000}]'

df <- fromJSON(json_string, stringsAsFactors = FALSE)

print(df)

R Output (Manual):

df <- data.frame(
  Name = c("John", "Jane"),
  Age = c(28, 34),
  Salary = c(75000, 85000),
  stringsAsFactors = FALSE
)

print(df)

Common Use Cases

  • Data Analysis: Import JSON data for statistical analysis in R
  • API Integration: Convert API responses to R data frames
  • Data Science: Prepare JSON data for machine learning models
  • Visualization: Load JSON data for ggplot2 visualizations
  • Research: Import research data from JSON format

Conversion Methods

  • jsonlite Package: Best for complex nested JSON, requires library installation
  • Manual data.frame(): No dependencies, works with base R, best for simple data
  • Recommendation: Use jsonlite for nested objects and arrays

Data Type Handling

  • Strings: Properly escaped, optionally converted to factors
  • Numbers: Preserved as numeric values
  • Booleans: Converted to TRUE/FALSE
  • Null: Converted to NA (R's missing value)
  • Objects: Serialized as JSON strings (manual) or nested data frames (jsonlite)

Column Name Sanitization

  • Special Characters: Replaced with underscores
  • Numbers: Prefixed with 'X' if starting with a number
  • Original Names: Restored using colnames() when needed
  • Valid Characters: Letters, numbers, dots, and underscores

Using in R/RStudio

  1. Copy the generated R code
  2. Open R or RStudio
  3. Paste the code into the console or script editor
  4. If using jsonlite, install it first: install.packages("jsonlite")
  5. Run the code to create your data frame

Best Practices

  • Simple Data: Use manual data.frame() for arrays of objects
  • Complex Data: Use jsonlite for nested structures
  • Factors: Keep stringsAsFactors = FALSE unless you need categorical data
  • Large Data: Consider using data.table or tibble for better performance
  • Testing: Always check the structure with str() after loading

Privacy & Security

All conversions happen locally in your browser. Your JSON data is never uploaded to any server, ensuring complete privacy and security.