SQL to R DataFrame Converter

Transform SQL database dumps into R data frame code for statistical analysis and data science with automatic type detection

SQL Input

R Code Output

About SQL to R DataFrame Converter

Convert SQL database dumps (CREATE TABLE and INSERT statements) to R data frame code with automatic type detection. Perfect for statistical analysis, data science, and machine learning workflows in R and RStudio.

Key Features

  • Automatic Type Detection: Detects logical, integer, numeric, and character types
  • data.frame() Generation: Creates proper R data frame code
  • Column Name Sanitization: Converts to valid R variable names
  • NA Handling: Properly handles missing values with NA
  • Type Comments: Includes comments showing detected types
  • Usage Examples: Includes print() and summary() statements
  • stringsAsFactors: Uses modern R practices (FALSE by default)
  • File Download: Save as .R file for RStudio

How to Use

  1. Input SQL Data: Paste your SQL CREATE TABLE and INSERT statements or upload a .sql file
  2. Review Output: The R code generates automatically with type detection
  3. Copy or Download: Use the Copy or Download button to save your R code
  4. Run in R: Execute the code in R, RStudio, or R Markdown

Type Detection

The converter automatically determines the appropriate R type:

  • logical: For TRUE/FALSE values
  • integer: For whole numbers
  • numeric: For decimal/floating-point values
  • character: For text values (default)
  • NA: For NULL or empty values

Example Conversion

SQL Input:

CREATE TABLE products (
  id INT,
  name VARCHAR(100),
  price DECIMAL(10,2),
  inStock BOOLEAN
);

INSERT INTO products VALUES (1, 'Laptop', 999.99, true);
INSERT INTO products VALUES (2, 'Mouse', 24.99, true);

R Output:

# R data frame generated from SQL table: products

products <- data.frame(
  id = c(1, 2)  # integer
  ,name = c("Laptop", "Mouse")  # character
  ,price = c(999.99, 24.99)  # numeric
  ,inStock = c(TRUE, TRUE)  # logical
  ,
  stringsAsFactors = FALSE
)

# View the data frame
print(products)

Common Use Cases

  • Statistical Analysis: Import database data for statistical tests
  • Data Science: Prepare data for machine learning models
  • Visualization: Create plots with ggplot2 from database data
  • Research: Analyze research data from databases
  • Reporting: Generate R Markdown reports from SQL data
  • Data Exploration: Explore database tables in RStudio
  • Teaching: Create datasets for R programming courses

R Data Frame Features

  • Column-based Structure: Each column is a vector of the same type
  • Named Columns: Access columns by name (df$column)
  • Row Names: Automatic row numbering
  • Type Safety: Each column maintains its data type
  • Subsetting: Easy filtering and selection
  • Compatible: Works with tidyverse, dplyr, ggplot2

Variable Name Sanitization

  • Special Characters: Replaced with underscores
  • Numbers: Prefixed with 'X' if starting with digit
  • Spaces: Converted to underscores
  • Reserved Words: Handled to avoid R keyword conflicts

Modern R Practices

  • stringsAsFactors = FALSE: Keeps strings as character vectors
  • c() Vectors: Explicit vector creation for clarity
  • Type Comments: Documents the intended data type
  • Print Statement: Includes code to view the data frame

Compatible R Packages

The generated data frames work seamlessly with:

  • tidyverse: dplyr, tidyr, ggplot2, readr
  • data.table: High-performance data manipulation
  • caret: Machine learning workflows
  • shiny: Interactive web applications
  • rmarkdown: Dynamic documents and reports

Supported SQL Syntax

  • CREATE TABLE: Extracts column names for data frame columns
  • INSERT INTO: Parses data values for type detection
  • Data Types: Handles all SQL data types (VARCHAR, INT, DECIMAL, BOOLEAN, etc.)
  • Quoted Strings: Handles single and double quotes with proper escaping
  • NULL Values: Converts to R's NA

Privacy & Security

All conversions happen locally in your browser. Your SQL data is never uploaded to any server, ensuring complete privacy and security.