SQL to R DataFrame Converter
Transform SQL database dumps into R data frame code for statistical analysis and data science with automatic type detection
SQL Input
R Code Output
About SQL to R DataFrame Converter
Convert SQL database dumps (CREATE TABLE and INSERT statements) to R data frame code with automatic type detection. Perfect for statistical analysis, data science, and machine learning workflows in R and RStudio.
Key Features
- Automatic Type Detection: Detects logical, integer, numeric, and character types
- data.frame() Generation: Creates proper R data frame code
- Column Name Sanitization: Converts to valid R variable names
- NA Handling: Properly handles missing values with NA
- Type Comments: Includes comments showing detected types
- Usage Examples: Includes print() and summary() statements
- stringsAsFactors: Uses modern R practices (FALSE by default)
- File Download: Save as .R file for RStudio
How to Use
- Input SQL Data: Paste your SQL CREATE TABLE and INSERT statements or upload a .sql file
- Review Output: The R code generates automatically with type detection
- Copy or Download: Use the Copy or Download button to save your R code
- Run in R: Execute the code in R, RStudio, or R Markdown
Type Detection
The converter automatically determines the appropriate R type:
- logical: For TRUE/FALSE values
- integer: For whole numbers
- numeric: For decimal/floating-point values
- character: For text values (default)
- NA: For NULL or empty values
Example Conversion
SQL Input:
CREATE TABLE products ( id INT, name VARCHAR(100), price DECIMAL(10,2), inStock BOOLEAN ); INSERT INTO products VALUES (1, 'Laptop', 999.99, true); INSERT INTO products VALUES (2, 'Mouse', 24.99, true);
R Output:
# R data frame generated from SQL table: products
products <- data.frame(
id = c(1, 2) # integer
,name = c("Laptop", "Mouse") # character
,price = c(999.99, 24.99) # numeric
,inStock = c(TRUE, TRUE) # logical
,
stringsAsFactors = FALSE
)
# View the data frame
print(products) Common Use Cases
- Statistical Analysis: Import database data for statistical tests
- Data Science: Prepare data for machine learning models
- Visualization: Create plots with ggplot2 from database data
- Research: Analyze research data from databases
- Reporting: Generate R Markdown reports from SQL data
- Data Exploration: Explore database tables in RStudio
- Teaching: Create datasets for R programming courses
R Data Frame Features
- Column-based Structure: Each column is a vector of the same type
- Named Columns: Access columns by name (df$column)
- Row Names: Automatic row numbering
- Type Safety: Each column maintains its data type
- Subsetting: Easy filtering and selection
- Compatible: Works with tidyverse, dplyr, ggplot2
Variable Name Sanitization
- Special Characters: Replaced with underscores
- Numbers: Prefixed with 'X' if starting with digit
- Spaces: Converted to underscores
- Reserved Words: Handled to avoid R keyword conflicts
Modern R Practices
- stringsAsFactors = FALSE: Keeps strings as character vectors
- c() Vectors: Explicit vector creation for clarity
- Type Comments: Documents the intended data type
- Print Statement: Includes code to view the data frame
Compatible R Packages
The generated data frames work seamlessly with:
- tidyverse: dplyr, tidyr, ggplot2, readr
- data.table: High-performance data manipulation
- caret: Machine learning workflows
- shiny: Interactive web applications
- rmarkdown: Dynamic documents and reports
Supported SQL Syntax
- CREATE TABLE: Extracts column names for data frame columns
- INSERT INTO: Parses data values for type detection
- Data Types: Handles all SQL data types (VARCHAR, INT, DECIMAL, BOOLEAN, etc.)
- Quoted Strings: Handles single and double quotes with proper escaping
- NULL Values: Converts to R's NA
Privacy & Security
All conversions happen locally in your browser. Your SQL data is never uploaded to any server, ensuring complete privacy and security.
