LaTeX to R DataFrame Converter

Transform LaTeX tables into R data frames for statistical analysis and data science

LaTeX Input

R Code Output

About LaTeX to R DataFrame Converter

Convert LaTeX tables to R data frames with support for base R data.frame, tidyverse tibble, and data.table formats. Perfect for statistical analysis, data science, and research workflows.

Key Features

  • Multiple Formats: data.frame, tibble, and data.table support
  • Type Detection: Automatic detection of numeric, logical, and character types
  • Column Sanitization: Clean column names for R compatibility
  • NA Handling: Empty values converted to NA
  • Row Names: Optional row name assignment
  • Factor Control: stringsAsFactors option for data.frame
  • Usage Examples: Includes print, summary, and str commands

How to Use

  1. Input LaTeX Table: Paste your LaTeX table or upload a .tex file
  2. Configure Options: Set data frame name and output format
  3. Review Code: The R code updates automatically
  4. Run in R: Copy and paste into R or RStudio

Output Formats

  • data.frame: Base R format, universally compatible
  • tibble: Modern tidyverse format with better printing
  • data.table: High-performance format for large datasets

Example Conversion

LaTeX Input:

\begin{tabular}{llll}
\toprule
Name & Age & City & Department \\
\midrule
John Doe & 28 & New York & Engineering \\
Jane Smith & 34 & London & Marketing \\
\bottomrule
\end{tabular}

R Output (data.frame):

# R Data Frame
# Generated from LaTeX table

df <- data.frame(
  Name = c("John Doe", "Jane Smith"),
  Age = c(28, 34),
  City = c("New York", "London"),
  Department = c("Engineering", "Marketing"),
  stringsAsFactors = FALSE
)

# View the data frame
print(df)

# Summary statistics
summary(df)

# Structure
str(df)

R Output (tibble):

# R Data Frame
# Generated from LaTeX table

# Requires: library(tibble)
df <- tibble(
  Name = c("John Doe", "Jane Smith"),
  Age = c(28, 34),
  City = c("New York", "London"),
  Department = c("Engineering", "Marketing")
)

# View the data frame
print(df)

# Summary statistics
summary(df)

# Structure
str(df)

Common Use Cases

  • Statistical Analysis: Import research data for R analysis
  • Data Visualization: Create plots with ggplot2
  • Machine Learning: Prepare datasets for modeling
  • Research Papers: Convert published tables to R
  • Reproducible Research: Document data sources in R scripts
  • Teaching: Create example datasets for R courses

Data Type Detection

  • Numeric: Integer and decimal values (28, 3.14, -5.2)
  • Logical: TRUE, FALSE, T, F (case-insensitive)
  • Character: Text strings (automatically quoted)
  • NA: Empty cells converted to NA

Column Naming Rules

Column names are sanitized to follow R conventions:

  • Only letters, numbers, dots, and underscores allowed
  • Cannot start with a number (prefixed with 'X')
  • Special characters replaced with dots
  • Spaces replaced with dots

Working with the Data Frame

Basic Operations:

# Access columns
df$Name
df[["Age"]]

# Filter rows
df[df$Age > 30, ]

# Add new column
df$Salary <- c(75000, 85000)

# Subset
subset(df, Department == "Engineering")

# Sort
df[order(df$Age), ]

Tidyverse Integration

Using with dplyr and ggplot2:

library(tidyverse)

# Data manipulation
df %>%
  filter(Age > 30) %>%
  mutate(AgeGroup = ifelse(Age > 35, "Senior", "Junior")) %>%
  arrange(desc(Age))

# Visualization
ggplot(df, aes(x = Department, y = Age)) +
  geom_bar(stat = "identity") +
  theme_minimal()

data.table Performance

High-performance operations:

library(data.table)

# Fast filtering
df[Age > 30]

# Fast aggregation
df[, .(AvgAge = mean(Age)), by = Department]

# Fast joins
setkey(df, Name)

# Chaining operations
df[Age > 30][order(-Age)]

Best Practices

  • Use data.frame for general-purpose work and compatibility
  • Use tibble for tidyverse workflows and better printing
  • Use data.table for large datasets and performance-critical code
  • Set stringsAsFactors = FALSE to avoid unexpected factor conversion
  • Check data types with str() after importing
  • Use meaningful variable names for data frames

Exporting Data

# Save to CSV
write.csv(df, "data.csv", row.names = FALSE)

# Save to RDS (R native format)
saveRDS(df, "data.rds")

# Save to Excel
library(writexl)
write_xlsx(df, "data.xlsx")

Privacy & Security

All conversions happen locally in your browser. Your LaTeX data is never uploaded to any server, ensuring complete privacy and security.