LaTeX to R DataFrame Converter
Transform LaTeX tables into R data frames for statistical analysis and data science
LaTeX Input
Convert LaTeX to other formats
R Code Output
Related Tools
LaTeX to RDF
Convert LaTeX tables to RDF format with Turtle, N-Triples, and RDF/XML support
LaTeX to reStructuredText
Convert LaTeX tables to reStructuredText format with grid and simple table styles
LaTeX to Ruby
Convert LaTeX tables to Ruby arrays, hashes, and Struct objects
LaTeX to SQL
Convert LaTeX tables to SQL CREATE TABLE and INSERT statements with automatic type detection
LaTeX to Textile
Convert LaTeX tables to Textile markup format for wikis and content management systems
LaTeX to TOML
Convert LaTeX tables to TOML configuration format with automatic type detection
About LaTeX to R DataFrame Converter
Convert LaTeX tables to R data frames with support for base R data.frame, tidyverse tibble, and data.table formats. Perfect for statistical analysis, data science, and research workflows.
Key Features
- Multiple Formats: data.frame, tibble, and data.table support
- Type Detection: Automatic detection of numeric, logical, and character types
- Column Sanitization: Clean column names for R compatibility
- NA Handling: Empty values converted to NA
- Row Names: Optional row name assignment
- Factor Control: stringsAsFactors option for data.frame
- Usage Examples: Includes print, summary, and str commands
How to Use
- Input LaTeX Table: Paste your LaTeX table or upload a .tex file
- Configure Options: Set data frame name and output format
- Review Code: The R code updates automatically
- Run in R: Copy and paste into R or RStudio
Output Formats
- data.frame: Base R format, universally compatible
- tibble: Modern tidyverse format with better printing
- data.table: High-performance format for large datasets
Example Conversion
LaTeX Input:
\begin{tabular}{llll}
\toprule
Name & Age & City & Department \\
\midrule
John Doe & 28 & New York & Engineering \\
Jane Smith & 34 & London & Marketing \\
\bottomrule
\end{tabular} R Output (data.frame):
# R Data Frame
# Generated from LaTeX table
df <- data.frame(
Name = c("John Doe", "Jane Smith"),
Age = c(28, 34),
City = c("New York", "London"),
Department = c("Engineering", "Marketing"),
stringsAsFactors = FALSE
)
# View the data frame
print(df)
# Summary statistics
summary(df)
# Structure
str(df) R Output (tibble):
# R Data Frame
# Generated from LaTeX table
# Requires: library(tibble)
df <- tibble(
Name = c("John Doe", "Jane Smith"),
Age = c(28, 34),
City = c("New York", "London"),
Department = c("Engineering", "Marketing")
)
# View the data frame
print(df)
# Summary statistics
summary(df)
# Structure
str(df) Common Use Cases
- Statistical Analysis: Import research data for R analysis
- Data Visualization: Create plots with ggplot2
- Machine Learning: Prepare datasets for modeling
- Research Papers: Convert published tables to R
- Reproducible Research: Document data sources in R scripts
- Teaching: Create example datasets for R courses
Data Type Detection
- Numeric: Integer and decimal values (28, 3.14, -5.2)
- Logical: TRUE, FALSE, T, F (case-insensitive)
- Character: Text strings (automatically quoted)
- NA: Empty cells converted to NA
Column Naming Rules
Column names are sanitized to follow R conventions:
- Only letters, numbers, dots, and underscores allowed
- Cannot start with a number (prefixed with 'X')
- Special characters replaced with dots
- Spaces replaced with dots
Working with the Data Frame
Basic Operations:
# Access columns df$Name df[["Age"]] # Filter rows df[df$Age > 30, ] # Add new column df$Salary <- c(75000, 85000) # Subset subset(df, Department == "Engineering") # Sort df[order(df$Age), ]
Tidyverse Integration
Using with dplyr and ggplot2:
library(tidyverse) # Data manipulation df %>% filter(Age > 30) %>% mutate(AgeGroup = ifelse(Age > 35, "Senior", "Junior")) %>% arrange(desc(Age)) # Visualization ggplot(df, aes(x = Department, y = Age)) + geom_bar(stat = "identity") + theme_minimal()
data.table Performance
High-performance operations:
library(data.table) # Fast filtering df[Age > 30] # Fast aggregation df[, .(AvgAge = mean(Age)), by = Department] # Fast joins setkey(df, Name) # Chaining operations df[Age > 30][order(-Age)]
Best Practices
- Use data.frame for general-purpose work and compatibility
- Use tibble for tidyverse workflows and better printing
- Use data.table for large datasets and performance-critical code
- Set stringsAsFactors = FALSE to avoid unexpected factor conversion
- Check data types with str() after importing
- Use meaningful variable names for data frames
Exporting Data
# Save to CSV write.csv(df, "data.csv", row.names = FALSE) # Save to RDS (R native format) saveRDS(df, "data.rds") # Save to Excel library(writexl) write_xlsx(df, "data.xlsx")
Privacy & Security
All conversions happen locally in your browser. Your LaTeX data is never uploaded to any server, ensuring complete privacy and security.
