HTML to R DataFrame Converter
Transform HTML into R DataFrame code
HTML Input
R DataFrame Code
About HTML to R DataFrame Converter
Convert HTML tables and data to R DataFrame code for statistical analysis and data science. Generate ready-to-use R code that can be directly executed in R or RStudio.
Key Features
- Table Extraction: Automatically extracts HTML tables with headers and data
- DataFrame Creation: Generates data.frame() constructor code
- Type Detection: Auto-detects numeric and character columns
- Multiple Tables: Handles multiple tables in a single HTML document
- Tidyverse Support: Optional tidyverse library import
- Factor Conversion: Optional strings as factors conversion
- Code Comments: Descriptive comments for documentation
How to Use
- Input HTML: Paste your HTML code or upload an .html file
- Configure Options: Set DataFrame name and conversion options
- Review Code: The R code updates automatically
- Copy to R: Copy the code and paste into R or RStudio
Generated Code Format
- data.frame(): Standard R DataFrame constructor
- Column Vectors: Each column as a c() vector
- Type Inference: Numeric columns without quotes
- Character Vectors: String columns with proper escaping
- Comments: Helpful comments for understanding
R Integration
To use the generated code in R:
- Open R or RStudio
- Copy the generated code
- Paste into R console or script file
- Execute the code to create the DataFrame
- Use standard R functions for analysis (head, str, summary, etc.)
- Perform statistical analysis or visualization
Common Use Cases
- Data Analysis: Import HTML tables for statistical analysis
- Web Scraping: Convert scraped HTML data to R DataFrames
- Report Import: Import data from HTML reports
- Research Data: Convert research data tables to R format
- Teaching: Create sample datasets for R tutorials
- Data Migration: Move data from HTML to R environment
Tips for Best Results
- Clean Tables: Use well-structured HTML tables with proper headers
- Meaningful Names: Use descriptive DataFrame names
- Check Types: Review column types after import
- Factor Conversion: Enable factors for categorical data
- Tidyverse: Include tidyverse for modern R data manipulation
- Test Code: Always test the generated code in R
Example R Code
# Example generated code
library(tidyverse)
iris_data <- data.frame(
Sepal_Length = c(5.1, 4.9, 7.0),
Sepal_Width = c(3.5, 3.0, 3.2),
Species = c("setosa", "setosa", "versicolor")
)
# View the data
head(iris_data)
str(iris_data)
summary(iris_data) Advanced Features
- Multiple DataFrames: Each table gets its own DataFrame
- Name Sanitization: Automatic cleanup of column names for R compatibility
- Content Extraction: Extract text content when no tables present
- Type Inference: Smart detection of numeric vs character data
- Factor Support: Optional factor conversion for categorical data
- Tidyverse Ready: Code compatible with tidyverse workflows
R DataFrame Operations
After importing, you can use standard R operations:
- head(): View first few rows
- str(): View structure and data types
- summary(): Get statistical summary
- subset(): Filter rows
- aggregate(): Group and summarize
- ggplot2: Create visualizations
Privacy & Security
All conversions happen locally in your browser. Your HTML is never uploaded to any server, ensuring complete privacy and security.
