XML to Avro Converter
Transform XML data into Apache Avro schema format with automatic type detection and sample data generation
XML Input
Convert XML to other formats
Avro Schema Output
Convert other formats to Avro
Related Tools
XML to BBCode
Convert XML data to BBCode table format for forums
XML to CSV
Convert XML data to CSV format with custom delimiters and RFC 4180 compliance
XML to DAX
Convert XML data to DAX table expressions for Power BI
XML to Excel
Convert XML data to Excel XLSX format with automatic parsing and formatting
XML to Firebase
Convert XML data to Firebase Realtime Database JSON structure with automatic type conversion
XML to HTML
Convert XML data to HTML table with optional CSS styling and formatting
About Apache Avro
Apache Avro is a data serialization system that provides rich data structures, a compact binary format, and schema evolution capabilities. This tool converts XML data into Avro schema definitions with automatic type detection.
Features
- Automatic Type Detection: Detects int, long, double, boolean, and string types
- Nullable Fields: Option to make all fields nullable with union types
- Custom Schema Names: Specify custom record name and namespace
- Sample Data: Optionally include sample JSON data for testing
- Field Sanitization: Ensures field names are valid Avro identifiers
Supported Data Types
Example
Input XML:
<products>
<product>
<id>1</id>
<name>Laptop</name>
<price>999.99</price>
</product>
</products>Output Avro Schema:
{
"type": "record",
"name": "Record",
"namespace": "com.example",
"fields": [
{
"name": "id",
"type": [
"null",
"int"
],
"default": null
},
{
"name": "name",
"type": [
"null",
"string"
],
"default": null
},
{
"name": "price",
"type": [
"null",
"double"
],
"default": null
}
]
}Use Cases
- Apache Kafka message schemas
- Hadoop data serialization
- Apache Spark data processing
- Data lake storage formats
- Schema registry integration
- Cross-language data exchange
FAQ
- Q: How are Avro field types chosen from XML values?
A: The tool scans all non-empty values in each column and picks the narrowest common Avro type:int,long,double,boolean, orstring. Mixed-type columns fall back tostring. - Q: What does the "Make fields nullable" option do?
A: When enabled, each field type becomes a union like{"null", "int"}with a default ofnull. This matches common patterns used with schema registries and Kafka. - Q: How should I choose the schema name and namespace?
A: Use a meaningful record name (for example,Product) and a reverse-DNS namespace such ascom.example.catalog. These identifiers appear in your Avro files and schema registry. - Q: What is the purpose of the optional sample data block?
A: The JSON array appended after the schema shows how real records would look when encoded with the generated schema. It is meant for documentation and quick testing, not as part of the.avscfile. - Q: Can I use the schema directly with Kafka and schema registries?
A: Yes. Save only the top JSON object (the Avro schema) to a.avscfile and register it with your schema registry or use it in your Kafka producer/consumer configuration.
