XML to MATLAB Converter
Transform XML data into MATLAB format
XML Input
MATLAB Output
About XML to MATLAB Converter
Convert XML data to MATLAB code with support for multiple data structures: cell arrays, matrices, struct arrays, and tables. Perfect for data analysis, scientific computing, and importing XML data into MATLAB.
Key Features
- Automatic Parsing: Intelligently extracts tabular data from XML structure
- Multiple Formats: Cell array, matrix, struct array, and table formats
- Type Detection: Automatically detects numeric vs. string data
- Header Support: Optional header row handling
- String Escaping: Properly escapes single quotes in strings
- Attribute Support: Includes XML attributes as columns (prefixed with @)
How to Use
- Input XML Data: Paste your XML data or upload an .xml file
- Select Format: Choose the desired MATLAB data structure
- Configure Options: Toggle header inclusion
- Copy or Download: Copy the code or download as .m file
- Run in MATLAB: Execute the code in MATLAB or Octave
Output Formats
1. Cell Array
Flexible format that can hold mixed data types:
data = {
'id', 'name', 'age'
'1', 'John Doe', '28'
'2', 'Jane Smith', '34'
}; 2. Matrix (Numeric)
Efficient format for numeric data only:
data = [ 1, 28, 75000 2, 34, 82000 3, 45, 95000 ];
3. Struct Array
Named fields for structured data access:
data(1) = struct(... 'id', 1, ... 'name', 'John Doe', ... 'age', 28); data(2) = struct(... 'id', 2, ... 'name', 'Jane Smith', ... 'age', 34);
4. Table (R2013b+)
Modern table format with named columns:
id = [1; 2; 3];
name = {'John Doe'; 'Jane Smith'; 'Bob Johnson'};
age = [28; 34; 45];
data = table(id, name, age); Example Conversion
XML Input:
<?xml version="1.0"?>
<employees>
<employee>
<id>1</id>
<name>John Doe</name>
<age>28</age>
</employee>
<employee>
<id>2</id>
<name>Jane Smith</name>
<age>34</age>
</employee>
</employees> MATLAB Output (Cell Array):
% Cell array with headers
data = {
'id', 'name', 'age'
'1', 'John Doe', '28'
'2', 'Jane Smith', '34'
};
% Access headers: data(1,:)
% Access data: data(2:end,:) Format Comparison
- Cell Array: Most flexible, handles mixed types, easy to use
- Matrix: Fastest for numeric operations, requires all numeric data
- Struct Array: Named field access, good for complex data
- Table: Modern, supports mixed types, best for data analysis
Supported XML Structures
- Repeating Elements: Automatically detects common record names (row, record, item, entry, employee, product, user)
- Nested Elements: Extracts child element values as columns
- Attributes: Includes XML attributes as columns (prefixed with @)
- Mixed Content: Handles various XML structures intelligently
Common Use Cases
- Data Analysis: Import XML data for statistical analysis
- Scientific Computing: Process experimental data from XML
- Simulation: Load configuration and parameters from XML
- Visualization: Import data for plotting and graphing
- Machine Learning: Prepare datasets from XML sources
- Signal Processing: Import time-series data
MATLAB Tips
- Cell Array Access: Use data{row,col} for cell contents
- Matrix Operations: Use standard matrix operations (+, *, etc.)
- Struct Access: Use data(idx).fieldname or {data.fieldname}
- Table Operations: Use data.VariableName or data{:,col}
- Type Conversion: Use cell2mat(), str2double(), etc. as needed
Compatibility
- MATLAB: All versions (Table format requires R2013b+)
- GNU Octave: Compatible with cell, matrix, and struct formats
- Scilab: Cell and matrix formats with minor syntax adjustments
Privacy & Security
All conversions happen locally in your browser. Your XML data is never uploaded to any server, ensuring complete privacy and security.
