SQL to Avro Converter
Transform SQL database dumps into Apache Avro schema format with automatic type detection and nullable field support
SQL Input
Convert SQL to other formats
Avro Schema Output
Convert other formats to Avro
Related Tools
SQL to BBCode
Convert SQL database dumps to BBCode table format for forums (phpBB, vBulletin, MyBB)
SQL to CSV
Convert SQL CREATE TABLE and INSERT statements to CSV format with customizable delimiters and options
SQL to DAX
Convert SQL database dumps to DAX table expressions for Power BI and Analysis Services
SQL to Excel
Convert SQL CREATE TABLE and INSERT statements to Excel XLSX format with formatting
SQL to Firebase
Convert SQL CREATE TABLE and INSERT statements to Firebase Realtime Database JSON structure
SQL to HTML
Convert SQL CREATE TABLE and INSERT statements to HTML table with styling options
About SQL to Avro Converter
Convert SQL database dumps (CREATE TABLE and INSERT statements) to Apache Avro schema format. Avro is a data serialization system that provides rich data structures, a compact binary format, and is widely used in big data processing frameworks like Apache Hadoop, Spark, and Kafka.
Key Features
- Automatic Type Detection: Intelligently detects int, long, double, boolean, and string types
- Nullable Fields: Optional union types with null for flexible data handling
- Custom Schema Name: Configure record name and namespace
- Sample Data: Optionally include sample data in JSON format
- Field Name Sanitization: Ensures Avro-compliant field names
- Smart Parsing: Extracts column names and data from SQL dumps
- File Download: Save as .avsc file
How to Use
- Input SQL Data: Paste your SQL CREATE TABLE and INSERT statements or upload a .sql file
- Configure Schema: Set schema name and namespace for your Avro record
- Choose Options: Enable nullable fields and sample data as needed
- Copy or Download: Use the Copy or Download button to save your Avro schema
Avro Type Mapping
- int: Integer values from -2,147,483,648 to 2,147,483,647
- long: Large integer values beyond int range
- double: Floating-point numbers with decimal places
- boolean: True/false values (including 1/0)
- string: Text and mixed content
- null: Optional union type for nullable fields
Example Conversion
SQL Input:
CREATE TABLE products ( id INT, name VARCHAR(100), price DECIMAL(10,2), in_stock BOOLEAN ); INSERT INTO products VALUES (1, 'Laptop', 999.99, true); INSERT INTO products VALUES (2, 'Mouse', 24.99, false);
Avro Schema Output (with nullable fields):
{
"type": "record",
"name": "products",
"namespace": "com.example",
"fields": [
{
"name": "id",
"type": ["null", "int"],
"default": null
},
{
"name": "name",
"type": ["null", "string"],
"default": null
},
{
"name": "price",
"type": ["null", "double"],
"default": null
},
{
"name": "in_stock",
"type": ["null", "boolean"],
"default": null
}
]
} Common Use Cases
- Apache Kafka: Define message schemas for Kafka topics
- Apache Hadoop: Store data in HDFS with Avro format
- Apache Spark: Process data with Avro serialization
- Data Lakes: Schema evolution and data versioning
- Microservices: Efficient data serialization between services
- ETL Pipelines: Data transformation and migration
Avro Advantages
- Compact Binary Format: Smaller file sizes compared to JSON/XML
- Schema Evolution: Add, remove, or modify fields without breaking compatibility
- Rich Data Structures: Support for complex nested types
- Code Generation: Generate classes in Java, Python, C++, etc.
- Fast Serialization: Efficient encoding and decoding
- Self-Describing: Schema is stored with the data
Nullable Fields
When enabled, fields are defined as union types with null:
- Flexible Data: Handle missing or optional values
- Default Values: Set default to null for optional fields
- Schema Evolution: Add new optional fields without breaking compatibility
Field Name Rules
Avro field names must follow these rules:
- Start with [A-Za-z_]
- Contain only [A-Za-z0-9_]
- Invalid characters are replaced with underscores
- Leading numbers are prefixed with underscore
Supported SQL Syntax
- CREATE TABLE: Extracts column names for schema fields
- INSERT INTO: Parses data values for type detection
- Data Types: Handles all SQL data types (VARCHAR, INT, DECIMAL, BOOLEAN, etc.)
- Quoted Strings: Handles single and double quotes with proper escaping
Integration with Big Data Tools
Apache Kafka:
- Use with Confluent Schema Registry
- Define message schemas for producers and consumers
- Enable schema validation and evolution
Apache Spark:
- Read and write Avro files with spark.read.format("avro")
- Efficient columnar storage with compression
- Schema inference and validation
Apache Hadoop:
- Store data in HDFS with Avro format
- Use with MapReduce and Hive
- Efficient data serialization and compression
Avro Resources
- Apache Avro: Official documentation (avro.apache.org)
- Confluent Schema Registry: Schema management for Kafka
- Avro Tools: Command-line utilities for Avro files
Frequently Asked Questions
- Q: Do I need both CREATE TABLE and INSERT statements? A: No. The converter can infer columns and types from INSERT statements alone, but including CREATE TABLE helps produce better field names.
- Q: What happens if some columns contain mixed data types? A: The tool inspects all non-empty values and chooses the most specific common Avro type. If values are inconsistent, the column falls back to
string. - Q: How are NULL or empty values handled? A: When nullable fields are enabled, NULL or empty values are represented as
nullin the sample data and allowed in the["null", "type"]union. - Q: Can I change the record name later? A: Yes. You can safely rename the Avro record (name/namespace) in the generated schema as long as all producers and consumers agree on the same schema.
- Q: Is the generated schema production ready? A: It is a solid starting point, but you should review field names, types, and defaults to match your organizations Avro and schema registry conventions.
Privacy & Security
All conversions happen locally in your browser. Your SQL data is never uploaded to any server, ensuring complete privacy and security.
